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COMPUTER MODEL OF COMPLEX WAVES
WITHIN AN ENCLOSURE AND
THEIR BIOLOGICAL EFFECTS

William Roush
James H. Stuhmiller

Applied Science and Engineering Technology
JAYCOR

ABSTRACT

""Tihe repeated passage of pressure waves past a given point, following an explosion in an
enclosure, results in the long and complicated pressure time histories called "complex waves." The
waves are not only complex because of their temporal variation, but their effect on biological
structures depends on the direction of each wave component. The ability to estimate injury under
these circumstances represents one of the greatest challenges of biomechanical modeling.

A mathematical model for the reflections of blast waves within an enclosure has been
constructed based on the concept of mirror-like reflections of the wave front at each solid surface.
The model accounts for the position and orientation of each surface and allows for the presence of
openings, such as doors and windows. A simplified model for the venting of explosion product
gases is also included 4  r ., ---( C/i.+ 0'Vcr r ,rsSOrC

The pressure loading time histories are combined with simplified models of the structural
response of various organ systems that are known to be injured by air blast. The combined models
not only allow estimates of potential injury due to explosions within enclosures, but also provide a
means of judging the accuracy of the blast calculations in terms of the requirements of injury
prediction.

The blast field predictions are compared with measurements made inside an Armored
Personnel Carrier and inside a field bunker. Many qualitative features are captured but the
agreement does not extent to individual details. A comparison of the peak overpressures and the
total pressure impulse shows that in most cases agreement is within 20-30%, but there are certain
cases for which the disagreement is much greater.

The measured and calculated pressure histories are used in the simplified biological
response models and a comparison made of the critical parameter of injury. For the tympanic
membrane and the upper respiratory tract, the critical stress calculated using the mathematical
model differ from that calculated using the measured data by an amount not significantly greater
than the variation of stress as a correlate of injury. For the lung, however, the variations are much
larger and suggest that a more accurate prediction scheme may be required.
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1. INTRODUCTION

The repeated passage of pressure waves past a given point, following an explosion in an
enclosure, results in the long and complicated pressure time histories called "complex waves." The
waves are not only complex because of their temporal variation, but their effect on biological
structures depends on the direction of each wave component. The ability to estimate injury under
these circumstances represents one of the greatest challenges of biomechanical modeling.

A mathematical model for the reflections of blast waves within an enclosure has been
constructed based on the concept of mirror-like reflections of the wave front at each solid surface.
The model accounts for the position and orientation of each surface and allows for the presence of
openings, such as doors and windows. A simplified model for the venting of explosion product
gases is also included.

The pressure loading time histories are combined with simplified models of the structural
response of various organ systems that are known to be injured by air blast. The combined models
not only allow estimates of potential injury due to explosions within enclosures, but also provide a
means of judging the accuracy of the blast calculations in terms of the requirements of injury
prediction.

The blast field predictions are compared with measurements made inside an Armored
Personnel Carrier and inside a field bunker. Many qualitative features are captured but the
agreement does not extent to individual details. A comparison of the peak overpressures and the
total pressure impulse shows that in most cases agreement is within 20-30%, but there are certain
cases for which the disagreement is much greater.

The measured and calculated pressure histories are used in the simplified biological
response models and a comparison made of the critical parameter of injury. For the tympanic
membrane and the upper respiratory tract, the critical stress calculated using the mathematical
model differ from that calculated using the measured data by an amount not significantly greater
than the variation of stress as a correlate of injury. For the lung, however, the variatior s are much
larger and suggest that a more accurate prediction scheme may be required.
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2. COMPLEX WAVE MODEL

The first step in COMPLX is to use the method of images(3 ,4 ) to generate a distribution of
changes which produces the same wave pattern within the enclosure.

This algorithm produces reflected images of the blast source, creating N primary images
(Fig. 1), where N is the number of enclosure walls. The primary images are reflected be the walls
of the enclosure, creating N*(N - 1) secondary images (Fig. 2). Images do not reflect off the wall
that created them. The secondary image- reflect into the walls of the enclosure creating
N*(N - 1)2 tertiary images (Fig. 3). This is an infinite process, producing reflecting images at
increasing distances from the original source. The model carries out the process until the images
reach a specific distance from the source. Images beyond this distance do not contribute to the
pressure-time history during an interval equal to the maximum distance divided by the speed of
sound.

First, the position of each image is computed as a function of the position of its source
within the enclosure. The equations used for computing image positions are:

Xi = Xs - (2 Dsurf Xnorml)

Yi = Ys - (2 Dsurf Ynorml)

Z i = Z s - (2 Dsurf Znorml)

where:
Xi = X coordinate of Image

Yi = Y coordinate of Image

Zi = Z coordinate of Image

Xs = X coordinate of Image source

Ys = Y coordinate of Image source

Zs = Z coordinate of Image source

Xnorm = X component of the reflecting wall's unit vector

Ynorml = Y component of the reflecting wall's unit vector

Znorml = Z component of the reflecting wall's unit vector

Dsurf = distance from the image source to the reflecting wall.

* 2-1
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Figure 1. Primary images (PI). i= reflecting wall.
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Figure 2. Secondary images (Sij). i = primary image source;
j = reflecting wall.
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Figure 3. Tertiary images (Tijk). ij =secondary image source;
k = reflecting wall.
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Next, the pressure-time history is computed as the sum of all blast waves that can be viewed
at the sensor location of interest. The model computes the path from the sensor back to the
original blast via each image and its source. For example, a tertiary image's path would involve the
reflection of the blast off three walls (Fig. 4). COMPLX checks each path to determine if it can be
"viewed" from the sensor, that is, that the path is not obstructed by any object and that the path
intersects the reflecting wall. COMPLX creates a list of all paths that are in view of the sensor.

The pressure-time history is the sum of the individual blast waves, each of which is
considered to be a Friedlander wave. The characteristics of the blast waves are calculated using the
normalized blast parameters quoted in Chapter 6 of Baker.( 5)

k

Pressure-time history: P(t) - i Pi(t) 0 _< t _< Tmax

i-i

where:

Tmax is given by the maximum specified distance an image can be from the
blast divided by the speed of sound.

i= blast wave index

k number of blast waves seen by sensor

[-b ( t/t d ) ]

Friedlander wave: 
P(t) - P (I - e

s "atd)

where:

P(t) pressure at time t

Ps = peak pressure

ta = time measured from wave arrival

td positive duration of wave

b = exponential parameter of Friedlander wave

The parameters Ps, ta, td, and b can be determined from Baker tables when the normalized
distance from the sensor is known.

D i = d/Dnot
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Figure 4. Third order reflection. The distance, d5, between the sensor (t) and the tertiary
image, T412, is equal to the path of the blast wave, d4, d3, d2, dj.
(d5 = d4 + d3 + d2 + dj)
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where:

Di - normalized distance from source

d = distance of blast wave path

Dnot = (E/Po)l/ 3

E = energy released by charge

Po = ambient pressure

The blast parameters t and td are determined from the relations:

t TaT o

td = T To

where:

Ta = normalized time of arrival

Ts  normalized positive duration

T o = Dnot/a

a = ambient speed of sound

The peak pressure, Ps, is determined both by the distance to and strength of the blast and
the orientation of the incident wave to the sensor.

for X -< e <-
2

Ps = [Pr cos(O) + Pi sin(O)] Po R

for >I I

Ps = Pi [1 + 0.25 cos(O)] Po R

where:

0 = angle between the individual blast waves and the orientation of an object at the given
location
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Ps = normalized reflected pressure

Pi = normalized incident pressure 0

Po = ambient pressure

R = reflectivity factor

The parameter R is the product of the reflectivities of each wall the wave encounters before
reaching the sensor.

COMPLX adds the pressurization of the enclosure due to expanding gases of the blast to
the pressure-time history. This corresponds to the "Quasi-Static Overpressure Response'( 3 ) Pnd
"fill"(4 ). The pressurization is the result of competition between heating of the ambient gases in the
enclosure by the explosive and the loss of energy from the flow leaking out of the enclosure. The
deviation for computing the pressurization of the enclosure follows as:

Equation of state for the entire enclosure:

pV - NRT

E -E + NC (T - T)
0 V 0

The explosion violently produces gas which adds mass and energy to the enclosure. Both factors
increase the pressure of the enclosure:

dp dE

p E

The explosion adds an amount of energy, E, when the explosion gases completely mix with the
ambient gases,

V (t)

E(t) - E + AE E

o VR

If the mixing proceeds at particle speed, ue, behind the blast, then
3 3

V(t) 4/3 r(u et) _uet, t3

V 3 RR 4/ je

where the volume, V, of the enclosure is represented by the equivalent sphere and Te is the time
for the expanding gases to fill the enclosure,
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1 (ci~l AE 3C 2
iI1~e AE 3for t < T (2)0 e o e e

If there is a place for the gases to leak to the ambient, then the flow will take energy out of the
enclosure at a rate

rdEl -E A
ldtJ = -V Uout out

The flow is driven by the energy difference between the outside and the inside,

u - kApout

so that

1 rd t " Po r- (3)

E ~ out0 0 0

To depends on the effectiveness of the leak, where:

To = 0 for a closed enclosure

To = co for a free field.

Combining Eqs. (1), (2), and (3) gives

2

dt +T- (4)
0 0 0 , t/T > I

e

Eq. (4) can be written in terms of dimensionless variables.

0 0

*where

r - t/te

to yield
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3r2

' + OP =(6)

where

T
0- T e

0

The solution is then

(3/ 3 [(Or)2 - 2(9.r) + 2 - 2 ert)

S13 /8310 2 _ 20 + 2 - 2 exp-0] e0O(T1), 1 < f(7
Using the equations of state, the equation for the expansion pressure becomes

pe(t) - Ee/Vr f(e)

where:

Ee = energy of explosive

Vr = volume of enclosure S

The final step in computing the load pressure-time history is to add the pressurization of the
enclosure,

p(t) - p(t) + Pe (t)

2-10 0



3. ORGAN RESPONSE MODEL

COMPLX uses the load pressure-time history determined in the previous section as the
driving force for the Generalizable Model.( 2 ) The Generalizable Model(2 ) uses the damped
harmonic oscillator equation for computing the structural dynamics of the body due to a blast
wave. Therefore the equation of motion for the body becomes:

d~ 2r i dx
m d-2 + 2 x + kx = p(t)

dt c

where:

m = mass/area

tc = characteristic damping time

k = spring constant/area

x = displacement

By solving for the displacement, x, and the velocity, dx/dt, COMPLX can compute the
delivered stress to a particular organ. The model uses the displacement to compute the stress
delivered to the tympanic and larynx membranes and the velocity to compute the stress delivered
to the lung.

For the tympanic and larynx membranes, the stress is computed from:

a" -fkxtissue

For the lung, the tissue stress is assumed to be proportional to the parenchymal pressure at
the pleural surface, which is given by:

2m dx
p - - -

p t dtc

When the maximum tissue stress within an organ exceeds a critical value, injury is predicted
to occur. Table 1 gives the parameter values for the organ systems.
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Table 1. Parameter Values for the Three Organ Systems

M. tc k 0Ocrit

Organ (kgm/m 2 ) (ins) (kiPa/mm) f (MPa)

Tympanic membrane 0.2 10 7.9 133 7.5-15

Upper respiratory tract 10 100 4 5 1

Lung 15 10 0 -- --

3-2I



4. COMPARISON OF COMPLEX WAVE MODEL
WITH DATA

We compare the predictions of COMPLX with two sets of complex blast environment data.
The first set was measured inside an APC (Fig. 5). The second was measured inside a field bunker
(Fig. 6). The digitized field data is plotted as a pressure-time history curve for comparison with the
same curve produced by the model.

Since the exact conditions of the test are not known, the comparisons are only approximate
but are intended to give the reader an idea of COMPLX's ability to predict the characteristics of a
complex wave. In the following sequence of plots, for both the APC and the bunker data, the
parameters of the model are set up such that:

1. Sensor positions and orientations are identical to those of the field blast.

2. The orientation function is the same as described in the second section of this report.

3. The walls have 100 percent reflectivity.

4. The enclosure is not pressurized.

The APC data was measured from a series of blasts in which the explosive charge weights
were varied. The specific charge weights were 57 gin, 113 gm, 227 gin, and 454 gm. The pressure
sensors (Fig. 5) used to measure the data were kept in the same location for the entire blast series.
The N and S pressure sensors faced upwards while the Lambdroid's four sensors faced towards the
blast, away from the blast, and perpendicular to the blast. The charges were all detonated in the
center of the APC. Comparison plots have been made with all the APC data. Figure 7 is an
example from this set.

The bunker data was measured from a series of blasts in which the sensor's position (Fig. 6)
was varied. In addition, for each sensor position a different charge weight was detonated, 227 gin
and 454 gin. The sensor configuration (Fig. 6) for this series of blasts was a free field pointing
upward, Lambdroid with a sensor pointing towards the blast, a sheep with a skin sensor pointing
towards the blast, and another sheep with an esophagus sensor. Comparison plots have been made
with all Bunker data. Figure 8 is an example from this set.

We have taken peak pressure and total impulse from each of the comparison data sets and
plotted field data versus model calculation (Figs. 9 & 10). This creates a scatter plot such that
those points which lie on the 45 degree line are of equivalent values for field data and model
calculation. The points that don't lie on the 45 degree line are off by a percentage difference.
Scatter plots are a good means of visualizing the correlation of a large data set.
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Figure 5. APC specification and sensor location.
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Figure 6. Bunker specification and sensor location.
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5. COMPARISON OF ORGAN RESPONSE USING
CALCULATED AND MEASURED PRESSURES

Both the predicted and measured pressure-time history curves are used as input to the
Generalizable Model(2 ) to produce a sequence of three plots. The first plot graphs the maximum
tympanic membrane stress as a function of time. The second plot graphs the maximum larynx
stress as a function of time. The third plot graphs the lung's overpressure as a function of time.
These quantities are used in the prediction of blast injury.

Figures 11 and 12 are the predicted organ response where the driving forces are plotted in
Figures 8 and 9, respectively. Scatter plots have been made for the maximum tympanic stress (Fig.
13), the maximum URT stress (Fig. 14), and the work done on the lung (Fig. 15). A case-by-case
description may be found in a supplementary report.
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Figure 11. 57 gm C-4 blast "S" free field sensor.
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